A Novel Secure Cosine Similarity Computation Scheme with Malicious Adversaries
نویسندگان
چکیده
منابع مشابه
Billion-Gate Secure Computation with Malicious Adversaries
The goal of this paper is to assess the feasibility of two-party secure computation in the presence of a malicious adversary. Prior work has shown the feasibility of billion-gate circuits in the semi-honest model, but only the 35k-gate AES circuit in the malicious model, in part because security in the malicious model is much harder to achieve. We show that by incorporating the best known techn...
متن کاملTwo-Output Secure Computation with Malicious Adversaries
We present a method to compile Yao’s two-player garbled circuit protocol into one that is secure against malicious adversaries that relies on witness indistinguishability. Our approach can enjoy lower communication and computation overhead than methods based on cut-andchoose [13] and lower overhead than methods based on zero-knowledge proofs [8] (or Σ-protocols [14]). To do so, we develop and a...
متن کاملTowards Billion-Gate Secure Computation with Malicious Adversaries
The goal of this paper is to assess the feasibility of two-party secure computation in the presence of a malicious adversary. Prior work has shown the feasibility of billion-gate circuits in the semi-honest model, but only the 35k-gate AES circuit in the malicious model, in part because security in the malicious model is much harder to achieve. We show that by incorporating the best known techn...
متن کاملImplementing Two-Party Computation Efficiently with Security Against Malicious Adversaries
We present an implementation of the protocol of Lindell and Pinkas for secure two-party computation which is secure against malicious adversaries [13]. This is the first running system which provides security against malicious adversaries according to rigorous security definition and without using the random oracle model. We ran experiments showing that the protocol is practical. In addition we...
متن کاملFaster Two-Party Computation Secure Against Malicious Adversaries in the Single-Execution Setting
We propose a new protocol for two-party computation, secure against malicious adversaries, that is significantly faster than prior work in the single-execution (i.e., non-amortized) setting. In particular, our protocol requires only O(ρ) public key operations and ρ garbled circuits, where ρ is the statistical security parameter, whereas previous work with the same number of garbled circuits req...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Network Security & Its Applications
سال: 2013
ISSN: 0975-2307,0974-9330
DOI: 10.5121/ijnsa.2013.5213